Cache Performance Optimizations for Iterative Linear Solvers and the Lattice Boltzmann Method

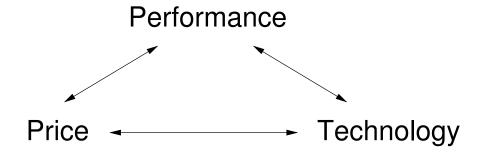
Markus Kowarschik
Lehrstuhl für Systemsimulation
Institut für Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Outline

- 1. Introduction: hierarchical memory architectures
- 2. Target algorithms
 - Iterative linear solvers
 - Cellular automata (e.g., the lattice Boltzmann method)
- 3. Locality optimizations (which may be automized)
 - Data layout optimizations
 - Data access optimizations
 - Performance results
- 4. (Inherently cache-aware multigrid methods)
- 5. Related topics and conclusions

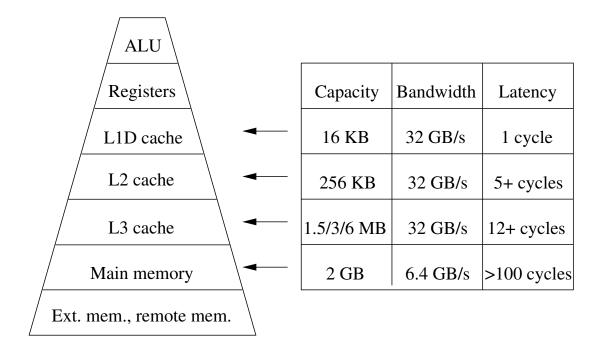
Goal: Mitigate the effects of the constantly widening gap: CPU speed ←⇒ DRAM main memory performance

Trade-off:



Approach: Hierarchical memory designs involving several layers of cache memories

Example: Intel Itanium 2 machine (1 GHz):



Estimate: 1 main memory access may take longer than 400 FP operations!

Goal: Exploit the memory hierarchy as efficiently as possible!

Spectrum of data locality optimizations to enhance cache utilization:

- Hardware techniques; e.g., data prefetching
- Compiler-based techniques; e.g., data prefetching, loop transformations

- Programming techniques; e.g.,
 - Data layout optimizations; e.g., array merging, array padding
 - Data access optimizations; e.g., loop transformations
- Inherently cache-aware (numerical) algorithms

Instruction cache performance is (typically) a minor issue in scientific computing

High performance computing requires the combination of

- 1. Efficient parallelization; e.g.,
 - Load balancing
 - Reduction of communication overhead
- 2. Optimal utilization of the individual resources, particularly by respecting the memory hierarchy

Target algorithms I — iterative linear solvers

We want to solve systems Ax = b of linear equations

 $A \in \mathbf{R}^{n \times n}$ is:

- highly structured; e.g., based on the discretization of PDEs using regular grids
- large, $n > 10^6$
- ullet sparse; i.e., $\mathcal{O}(n)$ nonzeros

We consider *iterative numerical algorithms*, particularly:

- Elementary schemes: Gauss-Seidel, Jacobi, SOR, weighted Jacobi
- Multigrid methods
 - Asymptotically optimal complexity, $\mathcal{O}(n)$ floating-point operations
 - Goal: generation of "optimal implementations of optimal algorithms"

Target algorithms II — CA/LBM

Prominent example of a cellular automaton (CA): Conway's game of life

Lattice Boltzmann method (LBM): CA models for simulating fluid flows:

- Simulations in 2D/3D
- It is straightforward to handle complex time-dependent geometries
- Applications in
 - CFD; e.g, simulation of turbulent flows
 - Material science; e.g., simulation of metal foams, FreeWiHR project
 - Chemical engineering; e.g., particle technology
- High computational requirements for realistic simulations
- Inherently parallel

The LBM

Starting point: Boltzmann equation (B.E.): $\left| \frac{\partial f}{\partial t} + \langle u, \nabla f \rangle = Q \right|$

$$\frac{\partial f}{\partial t} + \langle u, \nabla f \rangle = Q$$

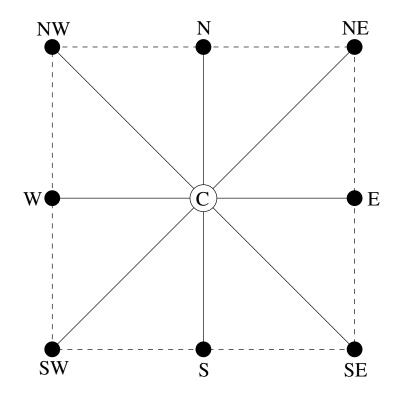
Continuous model of moving fluid particles:

- f = f(x, u, t): particle distribution function
- x: position in physical space
- *u*: velocity
- *t*: time
- Q: collision operator

LBM principle: Discretization of the B.E. w.r.t. space, time, and velocity

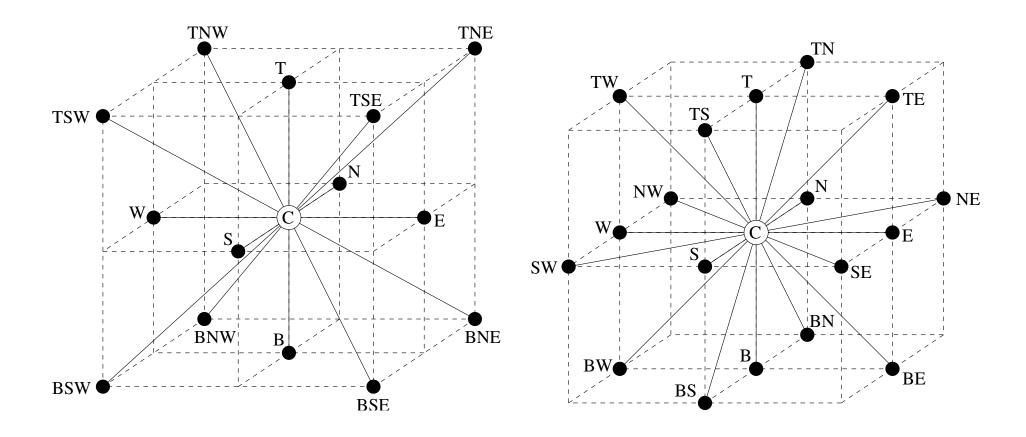
The LBM in 2D

Example: A single cell of the D2Q9 LBM model:

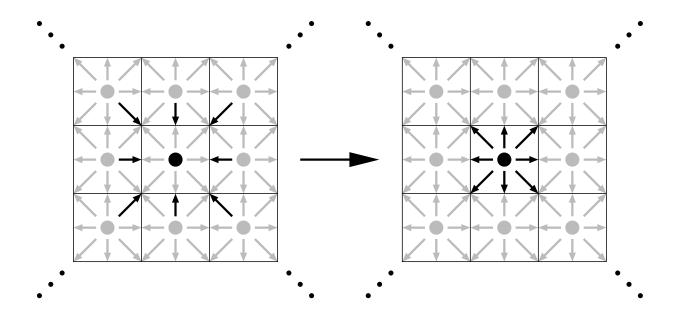


The LBM in 3D

Example: A single cell of the D3Q15 and the D3Q19 LBM model, respectively:



The LBM — how the algorithm works



- Successive passes through the data set, Jacobi-like update operation of grid cells in each time step
- "Stream and collide" or "collide and stream" update order
- Code efficiency measured in "million lattice site updates / second" (MLUPS)

The LBM — Example

Example: Simulation of free surfaces

- Nils Thürey's Diplomarbeit: http://www.ntoken.com/fluid
- Contribution to the FreeWiHR project: simulation of metal foams
- Show movies . . .

Locality optimizations

- Data layout optimizations:
 Address data storage schemes in memory;
 i.e., the way how the data are arranged in address space
- Data access optimizations:
 Address the order in which the data are accessed

Data layout optimizations — cache-aware data structures

Idea: Merge data which are needed together to increase *spatial locality:* cache lines contain several data items

Example: Gauss-Seidel on Ax = b, 2D, 5-point stencils:

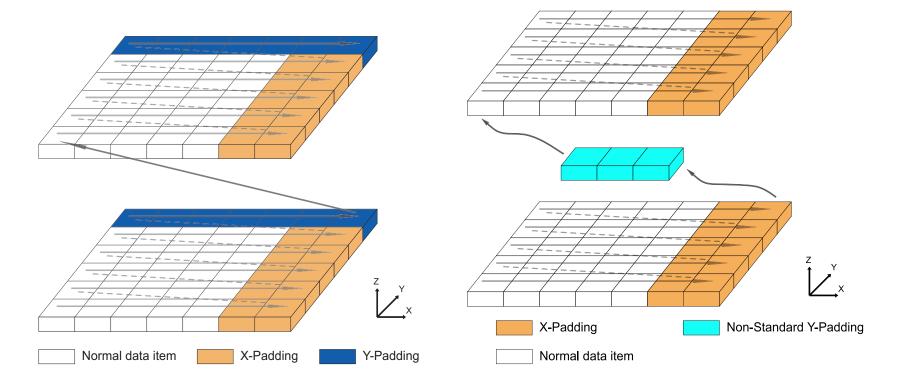
$$x_i^{(k+1)} = a_{i,i}^{-1} \left(b_i - \sum_{j < i} a_{i,j} x_j^{(k+1)} - \sum_{j > i} a_{i,j} x_j^{(k)} \right), \quad i = 1, \dots, N$$

```
typedef struct {
 double b;
 double cCenter, cNorth, cEast, cSouth, cWest;
} eqnData;
double x[N][N]; // Solution vector
eqnData rhsAndCoeff[N][N]; // Right-hand side and coefficients
```


Data layout optimizations — array padding

Idea: Increase array dimensions to change relative distances between elements \Longrightarrow Eliminate cache conflict misses; e.g., in stencil computations

Example: 3D arrays



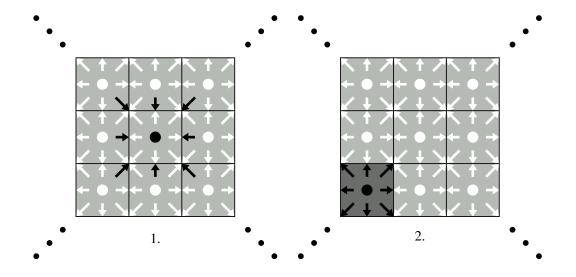
Standard padding in FORTRAN77:

double precision u(xdim + xpad, ydim + ypad, zdim)

Data layout optimizations — grid compression

Observation: It is not necessary to store two full grids (source + destination)

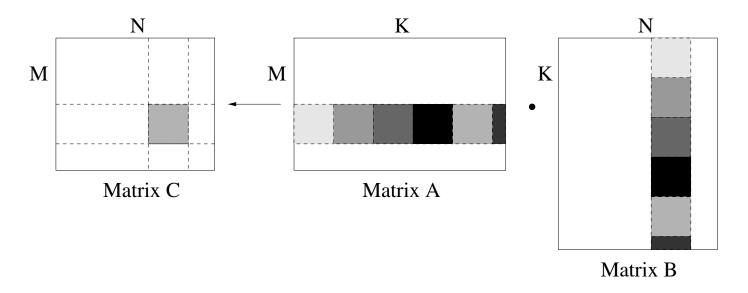
Idea: Overlay the source and the destination grid and introduce diagonal shifts:



- ullet GC reduces the memory requirements of the LBM by almost a factor of $\frac{1}{2}$
- GC implicitly enhances spatial locality

Principle: Divide the iteration space into blocks and perform as much work as possible on the data in cache (i.e., on the current block) before switching to the next block \Longrightarrow Enhance spatial/temporal locality while respecting data dependencies

Popular textbook example: Matrix multiplication: $C = A \cdot B$:



 $A,B,C\in\mathbf{R}^{n imes n}:\mathcal{O}(n^2)$ data accesses + $\mathcal{O}(n^3)$ floating-point operations \Longrightarrow High potential for data reuse

Blocked implementations of iterative linear solvers:

• Iteration loop: merge consecutive iterations into a single pass through the data set:

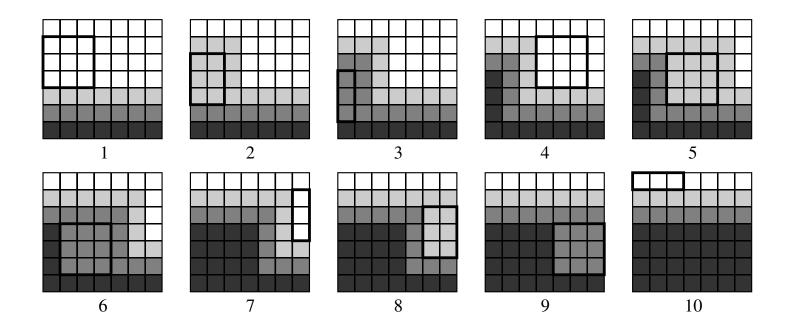
$$x^{(k+1)} = Mx^{(k)} + d, \quad x^{(k+2)} = M(Mx^{(k)} + d) + d, \quad \dots$$

Loops along spatial dimensions can additionally be blocked

Blocked LBM implementations:

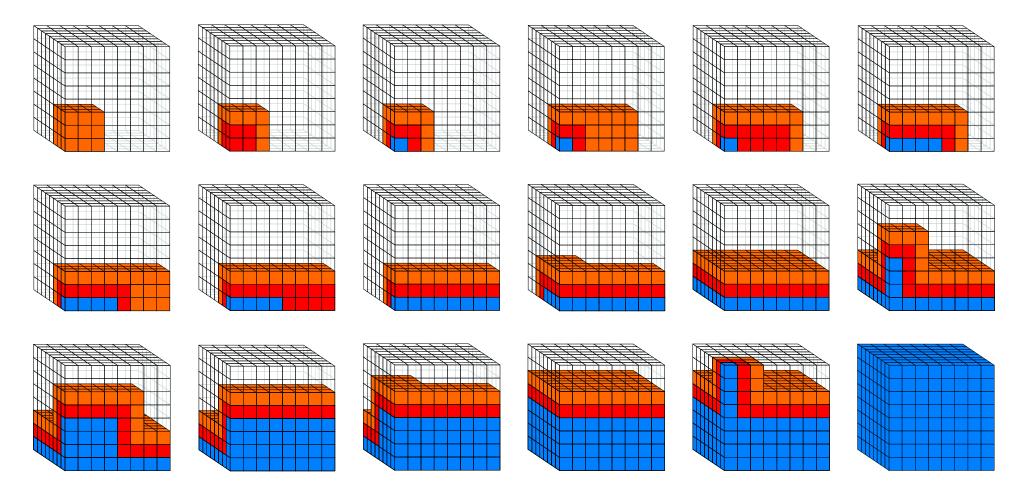
- Time loop: merge consecutive time steps into a single pass through the data set
- Loops along spatial dimensions can additionally be blocked

Example: LBM in 2D, 3-way blocking:



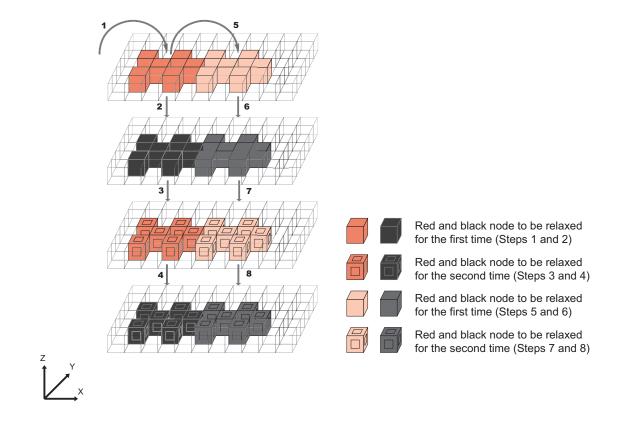
- Here: three consecutive time steps are executed during a single pass through the grid $(t_B=3)$
- Ideally: MLUPS rate independent of the grid size if the size of the "moving 2D block" is chosen appropriately

Example: LBM in 3D, 4-way blocking, $t_B = 3$:



Ideally: MLUPS rate independent of the grid size if the size of the "moving 3D block" is chosen appropriately

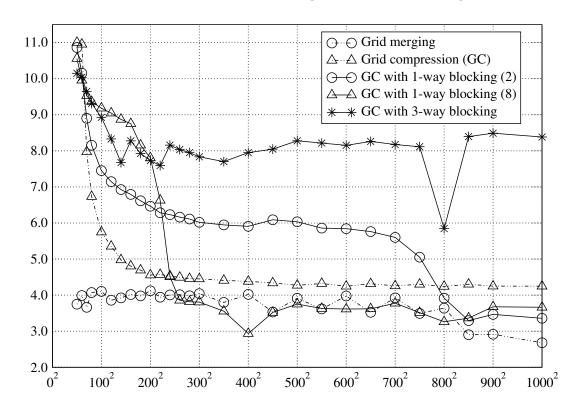
Example: 3D Red/black Gauss-Seidel (e.g., as a multigrid smoother), 3-way blocking:



Iteration loop and the loops along directions x and the y have been blocked

Performance results — LBM in 2D

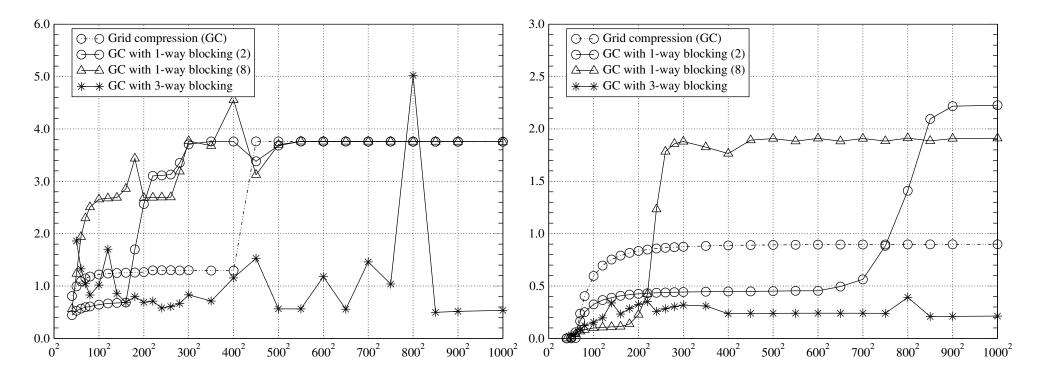
AMD Athlon XP 2400+ CPU, Linux, GNU gcc 3.2.1, flags: -03 -ffast-math:



- 1-way blocked codes perform well as long as working set fits into cache
- MLUPS rate of the 3-way blocked code (almost) independent of the grid size
- 8.4 MLUPS ≈ 974 MFLOPS

Performance results — LBM in 2D

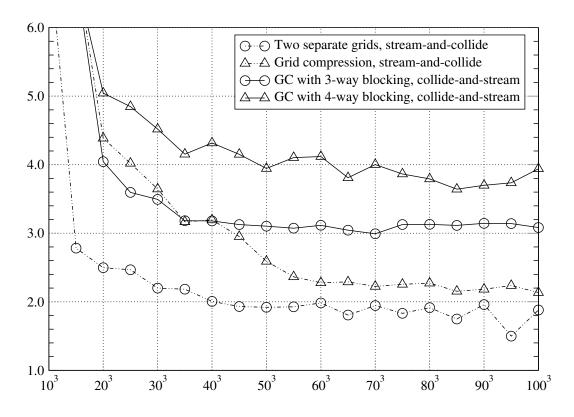
Profiling results using PAPI:



- Left: L1 (64 kB) misses per cell update, right: L2 (256 kB) misses per cell update
- L1 cache thrashing effect for grid size 800^2 , single grid row \approx 64 kB

Performance results — LBM in 3D

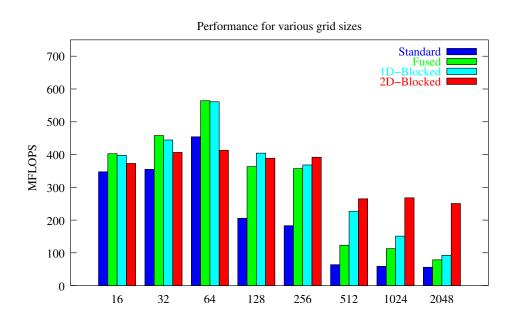
AMD Opteron CPU, 1.6 GHz, Linux, GNU gcc 3.2.2, flags: -03:

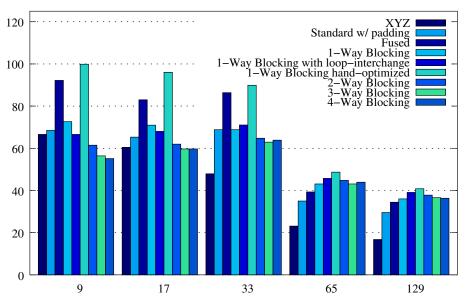


- 3D case exhibits lower speedups than 2D case
- 4 MLUPS \approx 1020 MFLOPS
- ullet AMD Athlon XP: fastest 3D LBM code runs at 2.2 MLUPS pprox 560 MFLOPS

Performance results — multigrid

Alpha A21164 machine, 500 MHz, Tru64 UNIX, F77, aggressive opt. enabled:





- Left: Gauss-Seidel, 2D, constant 5-point stencils (C. Weiß) right: V(2,2) MG cycles, 3D, variable 7-point stencils
- Generally: MFLOPS rates for 3D MG codes must be considered disappointing (when compared with the theoretically available peak performance)

Performance results — LBM vs. multigrid

Comparison: LBM vs. multigrid (MG):

- Typically: LBM is computationally more intensive (less memory-bound) than MG, example:
 - 3D Gauss-Seidel, variable 7-point stencils: 0.9 FP ops./data access
 - D3Q19 LBM model: 6.7 FP ops./data access
- Consequences:
 - MFLOPS rates for MG codes much lower than for LBM codes
 - Comparable speedups (?)

(Inherently cache-aware multigrid methods)

So far: optimization techniques have maintained numerical properties

One step further: novel multigrid algorithms

Starting point: *fully adaptive multigrid method* (U. Rüde)

Essential component: adaptive relaxation on Ax = b, $A = (a_{i,j})$ s.p.d.

Definition (scaled residual): $\theta_i(x) := a_{i,i}^{-1} e_i^T (b - Ax)$

Motivation:

Error reduction for one elementary relaxation step $x \leftarrow x + \theta_i(x)e_i$ is given by

$$||x^{\mathsf{old}} - x^*||_E^2 - ||x^{\mathsf{new}} - x^*||_E^2 = a_{i,i}\theta_i(x^{\mathsf{old}})^2$$

(Inherently cache-aware multigrid methods)

ActiveSet: set of indices of nodes with "large" scaled residuals

```
Algorithm: adaptive relaxation

1: while ActiveSet \neq 0 do

2: pick i \in ActiveSet

3: ActiveSet \leftarrow ActiveSet \setminus \{i\}

4: if |\theta_i(x)| > \theta then

5: x \leftarrow x + \theta_i(x)e_i

6: ActiveSet \leftarrow ActiveSet \cup Conn(i)

7: end if

8: end while
```

Fully adaptive multigrid:

Adaptive relaxation on the (well-conditioned) extended system which represents the entire grid hierarchy (U. Rüde, M. Griebel)

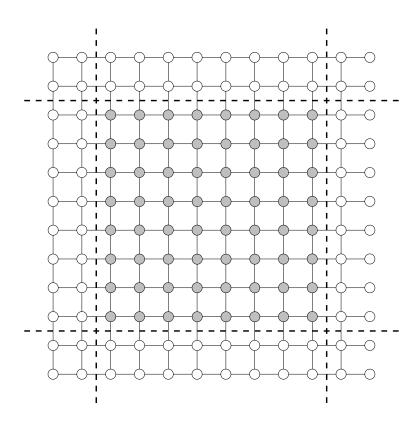
 \implies Multigrid efficiency + flexible update strategy + enhanced robustness

Flexible update strategy can be exploited to enhance cache utilization

(Inherently cache-aware multigrid methods)

Introducing patch adaptivity:

Overhead to maintain the active set motivates *patch-based* instead of *node-based* processing strategies



Performance tuning and numerical experiments: work in progress . . .

Things we have not addressed in this talk ...

- Extended complexity models covering
 - 1. Arithmetic work and
 - 2. Data locality/memory access behavior
- Code performance analysis, profiling techniques
- Alternative inherently data-local PDE solvers;
 e.g., based on domain decomposition approaches (D. Keyes, S. Turek, . . .)
- Aspects of software engineering; e.g.,
 - Combining efficiency and portability
 - Self-tuning numerical codes (ATLAS, SPIRAL, ...)
- Automized introduction of cache-based source code transformations; e.g., the *ROSE* project (D. Quinlan)
- Cache optimizations for unstructured meshes (C.C. Douglas, . . .)

Conclusions and final remarks

- Cache-aware programming can yield remarkable speedups
- We have targeted:
 - Iterative solvers for large sparse linear systems (particularly multigrid)
 - Cellular automata (particularly the LBM)
- Code optimizations may have conflicting goals; e.g.,
 - Blocking for cache may cause an increase in the TLB miss rate
 - Blocking for cache ←⇒ dynamic branch prediction
 - Blocking for cache ←⇒ pipelining, data prefetching

Thank you!

Any questions?

DiME project: data-local iterative methods

http://www10.informatik.uni-erlangen.de/dime

