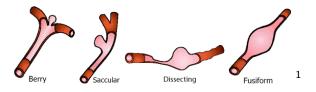

Simulation of Blood Flow in the Human Brain using the Cell Processor

Jan Götz, Markus Stürmer

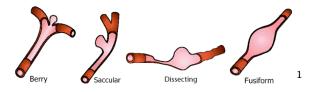
University Erlangen-Nuremberg – System Simulation

July 18th 2007 @ ICMMES


Outline

- Introduction
- The Cell Processor
- Implementation
- Results
- Outlook

Aneurysms


- dilatation (local balooning) of the blood vessel
- localized mostly at larger arteries in soft tissue (e. g. aorta, brain)
- can be diagnosed by modern imaging techniques
- can be treated by clips, coils, etc

 $^{^{}m 1}$ from The Toronto Brain Vascular Malfunction Study Group

Aneurysms

- dilatation (local balooning) of the blood vessel
- localized mostly at larger arteries in soft tissue (e. g. aorta, brain)
- can be diagnosed by modern imaging techniques
- can be treated by clips, coils, etc

Stenosis

abnormal narrowing in a blood vessel

¹from The Toronto Brain Vascular Malfunction Study Group

Motivation

- aneurysms are a major public health issue in every developed nation
- the flow situation could be crucial for further treatment of the patient

Motivation

- aneurysms are a major public health issue in every developed nation
- the flow situation could be crucial for further treatment of the patient

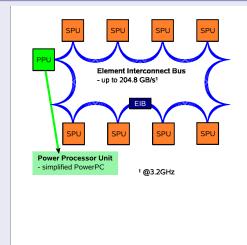
Goals

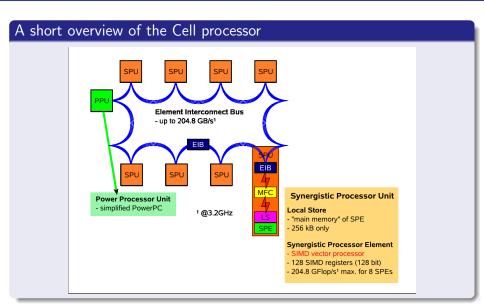
- to help in understanding the development of aneurysms
- to support planning of therapy

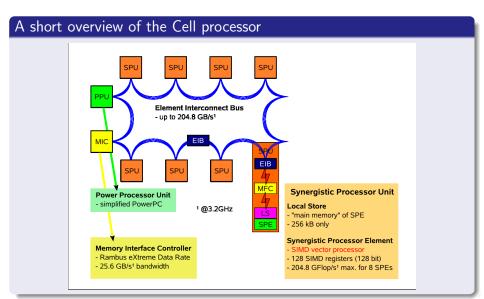
Motivation

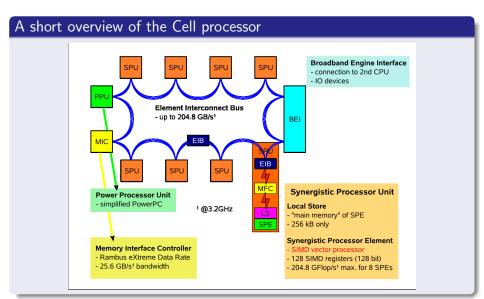
- aneurysms are a major public health issue in every developed nation
- the flow situation could be crucial for further treatment of the patient

Goals

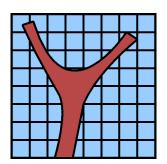

- to help in understanding the development of aneurysms
- to support planning of therapy

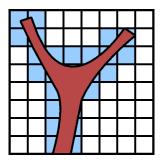

Challenges


- current imaging techniques result in data sets of 512³ and more
- long run times on desktop PCs and workstations
- for intra-surgery planing the algorithm should perform quasi real-time



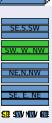
A short overview of the Cell processor





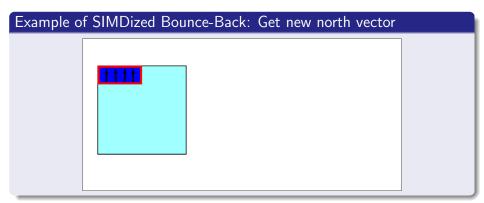
Domain decoupling

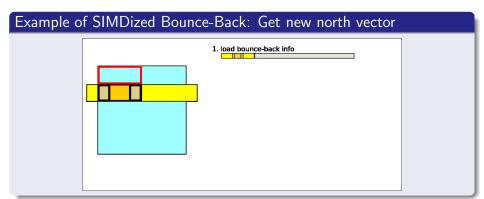
Divide whole domain into equally sized patches $(8 \times 8 \times 8)$ and only allocate and calculate patches including fluid cells.



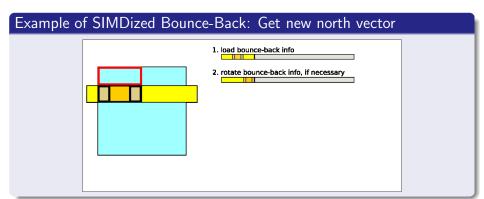
Our Data Structure

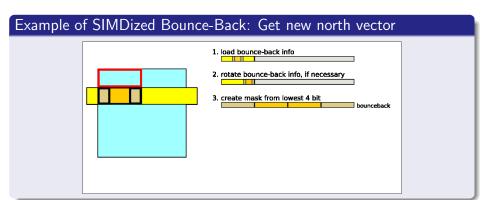
- Patch itself
 - $8 \times 8 \times 8 \times 19$ distribution functions
- Halo
 - copies of values that need to be exchanged
 - 30 planes and 12 lines
 - streaming becomes quite tricky
- Remote Halo
 - pointers to the neighbors' copies
- similar data for lattice type information

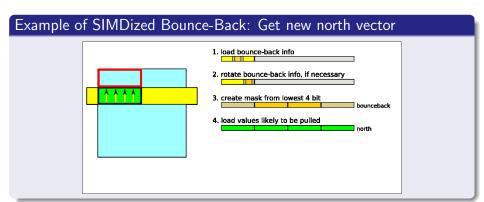


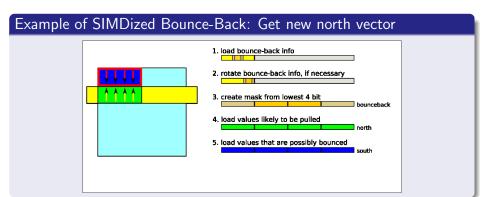


Updating a Patch on a SPU


- fetch...
 - distribution functions
 - LBM-cell type information
 - remote halo pointer structure
- 2 fetch...
 - halo planes from neighbors (T, B, N, S, E, W)
 - halo lines from neighbors (TS, NE, BW ...)
- set source / sink
- stream (and bounce) values (including values from halo planes)
- o correct pressure outflow
- calculate collision
- prepare new halo structure from calculated values
- store patch and halo data

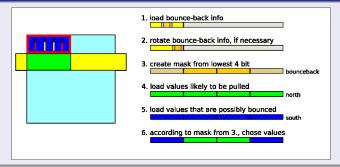






9 / 1





9/1

Example of SIMDized Bounce-Back: Get new north vector

Remarks on SIMDized Bounce-Back

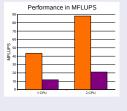
- streaming must take halo data into account ⇒ complicated
- $18 \times 8 \times 8 \times 8 = 9216$ "decisions" per patch
 - ⇒ scalar processing unbearably slow

Single precision performance and memory for a real vessel geometry with size $250 \times 250 \times 220$

	Core 2 Duo(3.0 GHz, both cores) ^a	Cell(3.2 GHz, 8 SPUs)
1 CPU	11.7 MFLUPS	
2 CPU	21.0 MFLUPS	
memory	128 MB	

^aMeasurements on Core 2 Duo (Woodcrest) done by Thomas Zeiser (RRZE) with the code from the Lattice Boltzmann Development Consortium

Single precision performance and memory for a real vessel geometry with size $250 \times 250 \times 220$


	Core 2 Duo(3.0 GHz, both cores) ^a	Cell(3.2 GHz, 8 SPUs)
1 CPU	11.7 MFLUPS	43.4 MFLUPS
2 CPU	21.0 MFLUPS	88.0 MFLUPS
memory	128 MB	106.3 MB

 $^{^{\}it a}$ Measurements on Core 2 Duo (Woodcrest) done by Thomas Zeiser (RRZE) with the code from the Lattice Boltzmann Development Consortium


Single precision performance of Cell vs. Core 2 Duo for real geometry

Single precision performance of Cell vs. Core 2 Duo for real geometry

Comparison of standard C code to advanced Cell code for a channel

	Standard C Code	Advanced Cell Code
Core 2 Duo	10.2 MFLUPS	
1 SPU	2.0 MFLUPS	38.5 MFLUPS
8 SPU	15.8 MFLUPS	98.1 MFLUPS

Outlook

More to do...

- examine influence of rounding mode
- MPI parallelization
- add more difficult model / evaluation

Outlook

More to do...

- examine influence of rounding mode
- MPI parallelization
- add more difficult model / evaluation

Acknowledgements

- thanks to Markus Stürmer for the implementation
- thanks to Thomas Zeiser for performance measurements
- thanks to IBM development center at Böblingen for access to Cell Blade
- thanks to ZAM / FZ Jülich for access to JUICE
- thanks to Professor Dörfler and Doctor Richter for medical advice

The End

Thank you very much for your attention!

